大数据
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》[2] 中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据处理:技术与流程
大数据”是需要新处理模式才能具有更强的决策力、 洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。特点是:数据量大(Volume)、数据种类多样(Variety) 、要求实时性强(Velocity)。对它关注也是因为它蕴藏的商业价值大(Value) 。也是大数据的4V特性。符合这些特性的,叫大数据。
大数据会更多的体现数据的价值。各行业的数据都越来越多,在大数据情况下, 如何保障业务的顺畅,有效的管理分析数据,能让领导层做出最有利的决策。 这是关注大数据的原因。也是大数据处理技术要解决的问题。
大数据处理技术
大数据时代的超大数据体量和占相当比例的半结构化和非结构化数据的存在, 已经超越了传统数据库的管理能力,大数据技术将是IT 领域新一代的技术与架构,它将帮助人们存储管理好大数据并从大体量、高复杂的数据中提取价值,相关的技术、 产品将不断涌现,将有可能给IT行业开拓一个新的黄金时代。
大数据本质也是数据,其关键的技术依然逃不脱:1)大数据存储和管理;2 )大数据检索使用(包括数据挖掘和智能分析) 。围绕大数据,一批新兴的数据挖掘、数据存储、数据处理与分析技术将不断涌现,让我们处理海量数据更加容易、更加便宜和迅速, 成为企业业务经营的好助手,甚至可以改变许多行业的经营方式。
大数据的商业模式与架构----云计算及其分布式结构是重要途径
)大数据处理技术正在改变目前计算机的运行模式,正在改变着这个世界:
它能处理几乎各种类型的海量数据,无论是微博、文章、电子邮件、文档、音频、视频,还是其它形态的数据;它工作的速度非常快速:实际上几乎实时;它具有普及性:因为它所用的都是最普通低成本的硬件,而云计算它将计算任务分布在大量计算机构成的资源池上,使用户能够按需获取计算力、存储空间和信息服务。云计算及其技术给了人们廉价获取巨量计算和存储的能力,云计算分布式架构能够很好地支持大数据存储和处理需求。这样的低成本硬件+低成本软件+低成本运维,更加经济和实用,使得大数据处理和利用成为可能。
2)大数据的存储和管理----云数据库的必然
很多人把NoSQL叫做云数据库,因为其处理数据的模式完全是分布于各种低成本服务器和存储磁盘,因此它可以帮助网页和各种交互性应用快速处理过程中的海量数据。它采用分布式技术结合了一系列技术,可以对海量数据进行实时分析,满足了大数据环境下一部分业务需求。
但我说这是错误的,至少是片面的,是无法彻底解决大数据存储管理需求的。
云计算对关系型数据库的发展将产生巨大的影响,而绝大多数大型业务系统(如银行、证券交易等)、电子商务系统所使用的数据库还是基于关系型的数据库,随着云计算的大量应用,势必对这些系统的构建产生影响,进而影响整个业务系统及电子商务技术的发展和系统的运行模式。
基于关系型数据库服务的云数据库产品将是云数据库的主要发展方向,云数据库(CloudDB),提供了海量数据的并行处理能力和良好的可伸缩性等特性,提供同时支持在在线分析处理(OLAP)和在线事务处理(OLTP)能力,提供了超强性能的数据库云服务,并成为集群环境和云计算环境的理想平台。它是一个高度可扩展、安全和可容错的软件,客户能通过整合降低IT成本,管理位于多个数据,提高所有应用程序的性能和实时性做出更好的业务决策服务。
3)大数据的处理和使用----新型商业智能的产生
传统针对海量数据的存储处理,通过建立数据中心,建设包括大型数据仓库及其支撑运行的软硬件系统,设备(包括服务器、存储、网络设备等)越来越高档、数据仓库、OLAP及ETL、BI等平台越来越庞大,但这些需要的投资越来越大,而面对数据的增长速度,越来越力不从心,所以基于传统技术的数据中心建设、运营和推广难度越来越大。另外一般能够使用传统的数据库、数据仓库和BI工具能够完成的处理和分析挖掘的数据,还不能称为大数据,这些技术也不能叫大数据处理技术。面对大数据环境,包括数据挖掘在内的商业智能技术正在发生巨大的变化。传统的传统商业智能技术,包括数据挖掘,主要任务舒建立比较复杂的数据仓库模型、数据挖掘模型,来进行分析和处理不太多的数据。
也许由于云计算模式、分布式技术和云数据库技术的应用,我们不需要这么复杂的模型,不用考虑复杂的计算算法,就能够处理大数据,对于不断增长的业务数据,用户也可以通过添加低成本服务器甚至是PC机也可以,来处理海量数据记录的扫描、统计、分析、预测。如果商业模式变化了,需要一分为二,那么新商业智能系统也可以很快地、相应地一分为二,继续强力支撑商业智能的需求。
所以实际是对传统商业智能的发展和促进,商业智能将出现新的发展机遇,面对风云变幻的市场环境,快速建模,快速部署是新商业智能平台的强力支撑。而不像过去那样艰难前行,难以承受商业运作的变化。
大数据处理常用技术有哪些?
Apache Hadoop: 是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构。
Apache Hive: 是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
Apache Pig: 是一个基于Hadoop的大规模数据分析工具,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。
Apache HBase: 是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
Apache Sqoop: 是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
Apache Zookeeper: 是一个为分布式应用所设计的分布的、开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务
Apache Mahout:是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。
Apache Cassandra:是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身
Apache Avro: 是一个数据序列化系统,设计用于支持数据密集型,大批量数据交换的应用。Avro是新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制
Apache Ambari: 是一种基于Web的工具,支持Hadoop集群的供应、管理和监控。
Apache Chukwa: 是一个开源的用于监控大型分布式系统的数据收集系统,它可以将各种各样类型的数据收集成适合 Hadoop 处理的文件保存在 HDFS 中供 Hadoop 进行各种 MapReduce 操作。
Cloudera Hue: 是一个基于WEB的监控和管理系统,实现对HDFS,MapReduce/YARN, HBase, Hive, Pig的web化操作和管理。
